Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Neurosurg ; 134(5): 1447-1454, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32413856

RESUMO

OBJECTIVE: Adjuvant radiation therapy (RT), such as cesium-131 (Cs-131) brachytherapy or stereotactic radiosurgery (SRS), reduces local recurrence (LR) of brain metastases (BM). However, SRS is less efficacious for large cavities, and the delay between surgery and SRS may permit tumor repopulation. Cs-131 has demonstrated improved local control, with reduced radiation necrosis (RN) compared to SRS. This study represents the first comparison of outcomes between Cs-131 brachytherapy and SRS for resected BM. METHODS: Patients with BM treated with Cs-131 and SRS following gross-total resection were retrospectively identified. Thirty patients who underwent Cs-131 brachytherapy were compared to 60 controls who received SRS. Controls were selected from a larger cohort to match the patients treated with Cs-131 in a 2:1 ratio according to tumor size, histology, performance status, and recursive partitioning analysis class. Overall survival (OS), LR, regional recurrence, distant recurrence (DR), and RN were compared. RESULTS: With a median follow-up of 17.5 months for Cs-131-treated and 13.0 months for SRS-treated patients, the LR rate was significantly lower with brachytherapy; 10% for the Cs-131 cohort compared to 28.3% for SRS patients (OR 0.281, 95% CI 0.082-0.949; p = 0.049). Rates of regional recurrence, DR, and OS did not differ significantly between the two cohorts. Kaplan-Meier analysis with log-rank testing showed a significantly higher likelihood of freedom from LR (p = 0.027) as well as DR (p = 0.018) after Cs-131 compared to SRS treatment (p = 0.027), but no difference in likelihood of OS (p = 0.093). Six (10.0%) patients who underwent SRS experienced RN compared to 1 (3.3%) patient who received Cs-131 (p = 0.417). CONCLUSIONS: Postresection patients with BM treated with Cs-131 brachytherapy were more likely to achieve local control compared to SRS-treated patients. This study provides preliminary evidence of the potential of Cs-131 to reduce LR following gross-total resection of single BM, with minimal toxicity, and suggests the need for a prospective study to address this question.


Assuntos
Braquiterapia , Neoplasias Encefálicas/secundário , Radioisótopos de Césio/uso terapêutico , Radiocirurgia , Radioterapia Adjuvante , Idoso , Braquiterapia/efeitos adversos , Dano Encefálico Crônico/etiologia , Dano Encefálico Crônico/prevenção & controle , Neoplasias Encefálicas/radioterapia , Neoplasias Encefálicas/cirurgia , Estudos de Casos e Controles , Hemorragia Cerebral/etiologia , Radioisótopos de Césio/administração & dosagem , Radioisótopos de Césio/efeitos adversos , Feminino , Seguimentos , Humanos , Estimativa de Kaplan-Meier , Masculino , Análise por Pareamento , Pessoa de Meia-Idade , Recidiva Local de Neoplasia , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/prevenção & controle , Hemorragia Pós-Operatória/etiologia , Radiocirurgia/efeitos adversos , Dosagem Radioterapêutica , Estudos Retrospectivos , Convulsões/etiologia , Resultado do Tratamento
4.
Cancer Res ; 76(7): 1677-82, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26964625

RESUMO

Tumor cells inherit from their normal precursors an extensive stress response machinery that is critical for survival in response to challenges including oxidative stress, wounding, and shear stress. Kruppel-like transcription factors, including KLF4 and KLF5, are rarely affected by genetic alteration during tumorigenesis, but compose key components of the stress response machinery in normal and tumor cells and interact with critical survival pathways, including RAS, p53, survivin, and the BCL2 family of cell death regulators. Within tumor cells, KLF4 and KLF5 play key roles in tumor cell fate, regulating cell proliferation, cell survival, and the tumor-initiating properties of cancer stem-like cells. These factors can be preferentially expressed in embryonic stem cells or cancer stem-like cells. Indeed, specific KLFs represent key components of a cross-regulating pluripotency network in embryonic stem cells and induce pluripotency when coexpressed in adult cells with other Yamanaka factors. Suggesting analogies between this pluripotency network and the cancer cell adaptive reprogramming that occurs in response to targeted therapy, recent studies link KLF4 and KLF5 to adaptive prosurvival signaling responses induced by HER2-targeted therapy. We review literature supporting KLFs as shared mechanisms in stress adaptation and cellular reprogramming and address the therapeutic implications. Cancer Res; 76(7); 1677-82. ©2016 AACR.


Assuntos
Fatores de Transcrição Kruppel-Like/metabolismo , Células-Tronco Pluripotentes/metabolismo , Diferenciação Celular , Humanos , Fator 4 Semelhante a Kruppel , Transdução de Sinais
5.
J Cell Sci ; 128(6): 1123-38, 2015 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-25632159

RESUMO

The high mobility group box protein SOX9 and the GLI1 transcription factor play protumorigenic roles in pancreatic ductal adenocarcinoma (PDA). In Kras transgenic mice, each of these factors are crucial for the development of PDA precursor lesions. SOX9 transcription is directly regulated by GLI1, but how SOX9 functions downstream of GLI1 is unclear. We observed positive feedback, such that SOX9-deficient PDA cells have severely repressed levels of endogenous GLI1, attributed to loss of GLI1 protein stability. SOX9 associated with the F-box domain of the SKP1/CUL1/F-box (SCF) E3 ubiquitin ligase component, ß-TrCP (also known as F-box/WD repeat-containing protein 1A), and suppressed its association with SKP1 and GLI1, a substrate of SCF-ß-TrCP. SOX9 also tethered ß-TrCP within the nucleus and promoted its degradation. SOX9 bound to ß-TrCP through the SOX9 C-terminal PQA/S domain that mediates transcriptional activation. Suppression of ß-TrCP in SOX9-deficient PDA cells restored GLI1 levels and promoted SOX9-dependent cancer stem cell properties. These studies identify SOX9-GLI1 positive feedback as a major determinant of GLI1 protein stability and implicate ß-TrCP as a latent SOX9-bound tumor suppressor with the potential to degrade oncogenic proteins in tumor cells.


Assuntos
Carcinoma Ductal Pancreático/patologia , Núcleo Celular/metabolismo , Células-Tronco Neoplásicas/patologia , Proteínas Oncogênicas/metabolismo , Neoplasias Pancreáticas/patologia , Fatores de Transcrição SOX9/metabolismo , Transativadores/metabolismo , Proteínas Contendo Repetições de beta-Transducina/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Anoikis , Apoptose , Western Blotting , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Núcleo Celular/genética , Proliferação de Células , Células Cultivadas , Citometria de Fluxo , Imunofluorescência , Humanos , Camundongos , Células-Tronco Neoplásicas/metabolismo , Proteínas Oncogênicas/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteólise , RNA Mensageiro/genética , Ratos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Transcrição SOX9/genética , Esferoides Celulares/metabolismo , Transativadores/genética , Proteína GLI1 em Dedos de Zinco , Proteínas Contendo Repetições de beta-Transducina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...